Formaldehyde columns from the Ozone Monitoring Instrument: Urban vs. background levels and evaluation using aircraft data and a global model

Nicholas L. Boeke¹ (Nicholas Boeke@gmail.com), Sergio Alvarez³, Kelly Chance⁴, Alan Fried², Thomas Kurosu⁴, Bernhard Rappenglück³, Dirk Richter², Petter Weibring², James Walega², Julian D. Marshall¹ and Dylan B. Millet¹

¹University of Minnesota, ²National Center for Atmospheric Research, ³University of Houston, ⁴Harvard-Smithsonian Center for Astrophysics

1. Introduction

Tropospheric vertical column (Ω [molec. cm⁻²]) measurements of formaldehyde (HCHO) and nitrogen dioxide (NO2) from space-borne sensors offer constraints on the sources and photochemical processing of VOC (volatile organic compounds) and NO_X (NO+NO₂). Quantitative interpretation of satellite column data requires error characterization and consistency evaluation against other data sets. We evaluate measurements of Ω_{HCHO} from the Ozone Monitoring Instrument (OMI) against aircraft measurements and columns simulated by the GEOS-Chem chemical transport model. Ongoing work involves applying OMI Ω_{HCHO} and Ω_{NO2} , with GEOS-Chem, to investigate ozone production and variability across the U.S.

2. Spatial and temporal gradients in HCHO and NO₂

OMI:

- UV/Vis spectrometer on NASA's Aura satellite
- 13:45 local overpass
- Global coverage daily

HCHO Retrievals

- Clear seasonal cycle in Ω_{HCHO} reflects temp., radiation and HCHO yield from biogenic VOC
- No major enhancements over urban areas
- Dry-season biomass burning visible in Yucatan

NO₂ Retrievals

- NO₂ columns mainly reflect anthropogenic emission sources; particularly fossil fuel combustion
- NO₂ lifetime decreases in summer with increased photolysis

Urban-Rural

Gradients

Regional

Variability

 High spatial resolution: (13×24km² at nadir) provides more cloud-free scenes than predecessors; better sampling statistics

0.0	0.5	1.0	1.5	2.0	2.5	(10 ¹⁶ molec. cm ⁻²)
0.0	1.0	2.0	3.0	4.0	5.0	(10 ¹⁵ molec. cm ⁻²)
A September 1989		War and a second	8		A Comment	
Apr		Ma	y			Jun

mean Ω_{NO2}

 No corresponding relationship is detectable for Ω_{HCHO} except over the U.S. Northeast (possibly U.S. Southwest?)

 In the U.S. Southeast high Here we evaluate the fidelity of isoprene emissions → high the satellite sensor in resolving such gradients for HCHO Ω HCHO

3. Airborne HCHO measurements

Campaign	Platform ^a	Map Symbol	Measurement Technique ^b	Limit of Detection	Measurement Uncertainty
TEXAQS-II	Piper Aztec		FHR	50-120pptv	10%
TEXAQS-II	WP-3D		DFGAS	20-30pptv	13%
MILAGRO	C-130		DFGAS	30-55pptv	13%
MILAGRO	DC-8		TDLAS	20-30pptv	13% - 15%
INTEX-B	C-130		DFGAS	20-30pptv	13%
INTEX-B	DC-8		TDLAS	20-30pptv	13% - 15%

^ameasurements on board Piper Aztec made by University of Houston; all others made by NCAR ^bFHR=fluorometric Hantzsch reaction spectroscopy; DFGAS=difference frequency generation absorption spectrometry; TDLAS=tunable diode laser absorption spectroscopy

2006 Campaigns

- TEXAQS-II: chemical processing, emissions and air quality in Texas airsheds
- MILAGRO and INTEX-B: pollution outflow and transport from Mexico City and Asia
- For comparison with OMI Ω_{HCHO} we restrict flight data to times bracketing OMI overpass (12:00-15:00 local time)

Mean HCHO profile measured aboard aircraft and simulated by GEOS-Chem for each campaign

In situ Ω_{HCHO} **Determination**

- On average HCHO profile shape is well-captured by **GEOS-Chem**
- We integrate HCHO within each flight's vertical limits then extrapolate to the surface and to the tropopause
- Ω_{HCHO} calculated this way from modeled profiles correlates well with with Ω_{HCHO} from full 3D model grid: Y=1.1X-0.02; R=0.98 providing support for the method

• OMI's mean bias is < 2% relative to aircraft measurements (full data set), -17% where $\Omega_{HCHO} > 4.0 \epsilon 15$ molec. cm⁻², but this bias is within the retrieval uncertainty

5. Summary

- Aircraft HCHO measurements from MILAGRO, TEXAQS-II and INTEX-B provide a challenging comparison for OMI and GEOS-Chem as many flights focused on sampling polluted urban and biomass-burning plumes, which may be diluted by averaging over the satellite/model footprint (up to 28×150 km² and 2°×2.5°)
- Still, both OMI and GEOS-Chem Ω_{HCHO} correlate well with HCHO observations from aircraft (R=0.80 and 0.81).
- Given sufficient averaging over time and space to reduce random noise in the retrieval, OMI is able to capture spatial and temporal gradients in HCHO within instrument uncertainty.

6. Ongoing Research

How does OMI Ω_{HCHO} relate to Ozone Production? (all plots below show mean values for summer months during 2005)

• Ω_{HCHO} closely related to peroxy radical production rate (P(RO₂)) - dependent on VOC-OH reactivity and HCHO yield of local VOC mix

• We use GEOS-Chem to examine how $P(RO_2)$ relates to Ω_{HCHO}

- Note higher P(RO₂) per HCHO yield in urban areas
- P(RO₂) is related to ozone production rate $P(O_X)$ by:
 - $-RO_2 + NO \rightarrow NO_2 + RO$
 - $-NO_2 + hv \xrightarrow{O_2} NO + O_3$

GEOS-Chem $P(O_X) / P(RO_2)$

0.4 0.6

molec. O_X

molec. RO₂

Compare $P(O_X)$ to $P(RO_2)$

- Not every peroxy radical makes ozone - Where NO_X / VOC is low, some RO₂
- removed by HO₂–RO₂ reactions - Where NO_X / VOC is high, RO₂ typically makes O₃ before being removed

Acknowledgements

This work is supported by the University of Minnesota and NASA (NNX10AG65G). We thank NASA, KNMI and SEDAC/CIESIN for data collection and preparation. This work is under review in J. Geophys. Res. – Atmospheres

4. OMI Ω HCHO evaluation

- OMI Ω_{HCHO} correlates well with Ω_{HCHO} extrapolated from aircraft measurements and GEOS-Chem simulations (R=0.8)
- Low OMI/GEOS-Chem bias possibly due to plumesampling focus of many flights vs. dilution over pixel/grid footprint
- Negative OMI Ω_{HCHO} values likely result from error minimization in fitting the retrieved radiances (only occurs where HCHO is very low)

OMI Ω_{HCHO} compared to aircraftderived and modeled Ω_{HCHO} GEOS-Chem • Aircraft Y=0.80X-0.01 R=0.81 Y=0.98X-0.03 R=0.80 Aircraft and Model Ω_{HCHO} (10¹⁶ molecules cm⁻²)

Dashed lines indicate best fit (regressions inset); dotted lines indicate 95% confidence intervals for regression